ASSESSMENT OF SPATIAL VARIABILITY IN SOILS DEVELOPED ON THE BASEMENT COMPLEX OF ORILE-IGBON/GAMBARI, OGBOMOSO, SOUTHWESTERN NIGERIA

¹Akande S. A., ²Oparinde, M.D., ¹Bello, B.O., ³Akande R. O., ¹Ganiyu C.P., ¹Olabooye A. O. and ²Esho, G.B. ¹Department of Agricultural Technology, Federal Polytechnic Ayede, Ayede, Oyo State. ²Department of Crop Production and Soil Science, Ladoke Akintola University of Technology, Ogbomoso, Oyo State.

³Department of Agricultural Economics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State.

Correspondence email: akandesa@federalpolyayede.edu.ng;

Tel: +2348035618017.

ABSTRACT

Understanding the relationship between parent materials and soil properties is crucial for effective land use planning and management. This study aims to determine parent materials effect on the physical and chemical characteristics of a selected toposequence in the Orile-Igbon/Gambari area of Ogbomoso, Oyo State, Nigeria. Four soil profile pits were dug at identified topographic positions (summit, upper slope, middle slope and the valley bottom) on a selected toposequence. Soil profile pits were studied and morphological attributes were described using USDA soil taxonomy guideline 2007 (color, stoniness, consistence, texture and structure). Soil samples collected from identified horizons were air dried, sieved and processed for laboratory analysis as pH, exchangeable cations, organic matters. Data collected were subjected to descriptive statistics and Coefficient of variation. The results of the analysis showed that, there was moderate variability of some soil morphological properties across the four positions on the toposequence. The textural class of the soil ranged from loamy sand to sandy loam, Available phosphorus was low in all the locations (2.5-28.6mg/kg), total nitrogen was predominantly low (0.5-3.9%). The topographic position also influenced soil properties, with valley bottom soils tending to have higher clay content and lower permeability due to the accumulation of finer particles. The results of this study can help guide sustainable land management techniques and offer insightful information about the spatial diversity of soil qualities in the area.

Keywords: Toposequence, soil characteristics, parent materials, land management

INTRODUCTION

oil, a fundamental component of agricultural systems strongly determines the suitability, sustainability, and productivity of those systems (FAO and ITPS, 2015; Brady and Weil, 2016). The ability of soils to support crop productions. However, the soil within a given area with an identical climate may differ greatly due to differences in parent materials, slope and or vegetation (Olatunji et al., 2017). Its formation is a complex process shaped by climate, parent material, relief, and organisms over time. Parent material, the foundation of soil, consists of consolidated or unconsolidated mineral particles and organic matter that have undergone varying degrees of chemical weathering (Weinheim, 2012). The variations of soil characteristics are dependent on the changes in the factors of soil formation and most influenced by the predominant factor(s) and subsequently the distribution of soils. These could be captured for crop production and management with the aid of soil survey. An Assessment of Spatial Variations of Some Soil Properties under Different Land Uses in SouthWestern Nigeria

(Senjobi et al., 2013) found that different land use types on the same soil class had varying high coefficients of variation (CV > 35%) for many soil properties, indicating significant variability within fairly small areas. Potentials and limitations of soil physical conditions are very important for crop production as they control the environment and hence moisture and nutrient uptakes. In light of the above, it is of paramount importance to have an in-depth knowledge on the characteristics of soils of any area, in order to manage and use the resources, thereby maximize crop production to the allowable genetical potential limits and conserve the soils for future use (Olatunji et al., 2017).

A major motivation for research in soil variability is the need to make the best use of the land, available water and energy resources. Thus, this study focused on assessing soil variability as a key factor in identifying soil properties related to crop production, particularly in the Orile-Igbon/Gambari area of Ogbomoso, which has been under a mixed cropping system for several

"Akande S. A., ²Oparinde, M.D., ¹Bello, B.O., ³Akande R. O., ¹Ganiyu C.P., ¹Olabooye A. O. and ²Esho, G.B.

years. This work aimed at identifying where acetate solution (NH₄OAc) displacement method variations occur on the various part of the conducted at pH 7.0 as explained in the landscape. Thus, the objectives of the study were. Laboratory Manual for Agronomic Studies in (i) To characterize the morphological, physical Soil, Plant and Microbiology, University of and chemical properties of the soil profiles along Ibadan (Odu et al., 1986). Soil organic carbon the selected landscape; and (ii) Provide was analyzed by Walkley and Black wet of these farms in relation to topographical effects water and 1 N KCl at the soil-liquid ratio of 1:2. for sustainable crop productions.

Materials and method Description of the study area

The study was conducted on a major toposequence situated within the Southern Guinea savanna region of Ogbomoso, Oyo State, Nigeria. This area is characterized by a distinct dry and wet season cycle with relatively high humidity. Specifically, Orile Igbon-Gambari is located at the northwestern part of Surulere Local RESULTS AND DISCUSSIONS Government Area, Oyo State. The region has an elevation of approximately 100 meters above sea level latitude 8° 16' 0" N and longitude 4° 19' 59" E. The average annual temperature in this area is 28°C, while the mean annual rainfall is around 1200 mm, with a recorded range of 786.2 to 1513 mm. The high relative humidity favours the cultivation of crops such as cowpea, maize, millet, cassava and yam (Akande et al., 2024).

Soil sampling and laboratory analysis

The selected toposequence was divided into four topographic positions for the purpose of this work. The positions included the summit or crest, upper slope, middle slope, and the valley bottom. Four standard profile pits were dug on each of the topographic positions, described and according to numbers of identified horizons using FAO (2006) guideline for soil profile pit description. The samples were air dried, crushed and made to pass through 2.0 mm mesh sieve. Percentage gravel in the soils was determined by sieving and calculated as a percentage of the whole soil mass that passed through the 2.0 mm sieve. Particle size analysis was performed using the Bouyoucous hydrometer method as outlined by Gee and Or, (2002). Exchangeable bases (Ca, (pH 7) (Thomas, 1982). Exchangeable calcium (Essington, 2004). and magnesium were determined by EDTA Furthermore, the accumulation of eroded

information of the properties of soils on the digestion method as modified by Nelson and landscape that could be limiting the productivity Sommers, (1982). Soil pH was measured in both

Statistical analysis

The data generated were analyzed using classical statistical methods to obtain the minimum, maximum, mean, median and standard deviation. Coefficient of variation was determined to find out how variables vary in the study sites. All statistical analysis was carried out with the aid of SAS (SAS Institute, 2009).

Variation in morphological properties

The morphological features of the soils on the four profile pits at the study area are presented in Table 1. The soils were generally deep (ranging from 170 - 200 cm) and between 4 to 6 horizons could be identified in all the profile pits. All the four pedons were grayish brown (10YR 5/4) at top soil. The other physical properties observed in study area were mottle, stoniness, structure, cutan, boundary form. Pedon 1 had a total of 6 horizons. The result shows that the soil at pedon 1 is basically loam. Pedon 2 had a total of 5 horizons and the soil at pedon has a textural class of sandy clay. Pedon 3 had 6 total sampling point with textual class of sandy clay. While pedon 4 had a total of 4 horizons with a textural class of silt loam. The black and dark brown colour (7.5YR 3/1) observed at the topsoil can generally be attributed to a high organic matter content or the presence of expanding clay minerals such as smectite. Organic matter imparts a dark coloration to soils because decomposed plant and microbial residues form humic substances that strongly absorb light (Brady and Weil, 2017). In addition, soils containing 2:1 expanding clays tend to appear darker when moist due to their fine particle size, high surface area, and strong ability Mg, K, and Na) were extracted with 1 N NH₄OAc to retain water and adsorb organic coatings

complexio-metric titration while exchangeable materials from higher topographic positions to potassium and sodium were determined by flame the lower points can led to accumulations of photometry (Jackson, 1962). Cation Exchange organic matter and finer soil particles in lower Capacity (CEC) was determined by ammonium areas. These depositional processes contributed "Akande S. A., 'Oparinde, M.D., 'Bello, B.O., 'Akande R. O., 'Ganiyu C.P., 'Olabooye A. O. and 'Esho, G.B.

observed in the pedons at the lower positions H⁺ and Al³⁺: These are indicators of soil acidity (Jenny, 1994; Foth, 1990).

likely reflects a combination of organic matter content enrichment and clay materials accumulation resulting from both biological activities and topographic redistribution of range between 0.5 to 1.66 cmol/kg, indicating chemical properties in the study area. The pH neutral soils, which is typical for many 1990; Havlin et al., 2014).

higher than Mg2+ in all pedons and depths, cation exchange capacity and low acidity, which contributing to soil structure and plant nutrition. is generally favorable for agricultural Na⁺ and K⁺: These are relatively low, indicating productivity. low salinity and potentially low exchangeable

to the dark coloration and higher fertility K⁺. Hydrogen (H⁺), Aluminum (Al³⁺), and ECEC. and potential toxicity. The values are generally Thus, the observed dark colour of the topsoil low, indicating low acidity and low potential for aluminum toxicity. ECEC (Effective Cation Exchange Capacity). This is a measure of the soil's ability to hold and exchange cations. Values materials. pH is consistently the least variable moderate to high cation exchange capacity, which is favorable for nutrient retention. Organic values range between 4.8 to 5.7 for H₂O and 4.8 to Carbon (Org. C) and Total Nitrogen (Total N). 5.2 for KCl across the different pedons and These are important indicators of soil fertility and depths. These values indicate slightly acidic to health. Org. C ranges from 0.04% to 0.06%, while Total N ranges from 0.90% to 3.90%, agricultural soils, as such pH ranges generally which are moderate levels for agricultural soils. favor nutrient availability and microbial activity Iron (Fe), Copper (Cu), Zinc (Zn), and (Brady and Weil, 2017). The presence of Ca²⁺ and Manganese (Mn) Fe, Cu, Zn, and Mn. These Mg²⁺ as dominant exchangeable cations is also micronutrients are essential for plant growth and characteristic of fertile soils, since these basic metabolism. The levels are generally sufficient cations help buffer soil acidity and contribute to for plant growth, with Fe being the highest. The improved soil structure and plant nutrition (Foth, soils described are moderately acidic, with good levels of organic matter and essential nutrients These are essential nutrients, with Ca²⁺ being for plant growth. They show moderate to high

RESULTS AND DISCUSSION

Horizon	Depth	Colour	Structure	Consistence	Boundary	
	(cm)	_		(moist)	<u> </u>	
			pedon 001 GB sumi	nit		
A,	0-30	10YR 5/6	Granular	non-sticky and loose	Smooth and clear	
AB	30-55	10YR 5/6	Granular	non-sticky and loose	smooth and clear	
B,	55-90	2.5YR 5/4	very fine granular	non-sticky and dry loose	Smooth and clear	
B ₂	90-140	10YR 4/6	coarse sub-angular blocky	non-sticky and dry loose	broken and gradual	
вс	140-170	10YR 7/8	medium sub-angular blocky	sticky, firm and very hard	broken and gradual	
C,	170-200	10YR 7/8	medium sub-angular blocky	sticky, firm and very hard		
pedon 002	GB uppe	er slope				
A,	0-29	10YR 4/3	single grain	non-sticky and dry loose	clear and smooth	
AB	29-66	10YR 5/3	single grain	non-sticky and dry loose	clear and smooth	
B,	66-115	10YR 6/6	single grain	non sticky, loose and dry loose	Smooth and clear	
B ₂	115-161	10YR 7/8	very fine granular	non sticky, loose and dry loose	smooth and diffuse	
вс	161-200	10YR 8/8	coarse angular blocky	non-sticky, loose and very hard		
pedon 00	3 GB mi	iddle				
slope A₁	0-22	10 YR 3/2	very fine crumb	non-sticky, firm and dry loose	irregular and diffuse	
AB	22-56	10YR 3/1	single grain	non-sticky and dry loose	clear and smooth	
B ₁	56-88	10YR 6/6	fine or thin granular	non-sticky, loose and dry loose	irregular and diffuse	
					wavy and gradual	
вс	133-170	7.5YR 6/6	medium and granular	non-sticky, loose and dry loose	broken and gradual	
C,	170-200	10YR 7/3	coarse angular blocky	sticky, firm and hard		
pedon 004	GB lowe	er slope				
A ₁	0-35	7.5YR 3/1	very fine crumb	non-sticky loose and dry	smooth and clear	
AB	35-51	7.5 YR 8/1	very fine crumb	non-sticky, loose and dry loose	smooth and clear	
B,	51-100	10YR 7/1	very fine crumb	very sticky, very firm and hard	Gradual	
вс	100-170	10YR 7/2	Very fine crumb	Waterlogged		

Table 2: Physical properties of soils of Orile Igbon toposequence

Horizon	Depth (cm)	Very	coarse Coarse sand Medium sand		Fine sand	Very	fine Total sand	Silt	Clay (<.002mm)
		sand	(145)	(.45225)	(.22505)	sand		(.05002)	(<.002mm)
		(2-1mm)			(.22505)	(.075	75)		
pedon 001	GB summit								
$\mathbf{A}_{\scriptscriptstyle 1}$	0-30	4.3	7.5	14.2	18.7	21.0	65.7	22.5	11.8
AB	30-55	4.4	6.8	14.5	22.4	26.4	74.5	5.9	19.6
B,	55-90	3.3	5.6	8.9	15.3	19.8	52.9	34.3	12.8
\mathbf{B}_{2}	90-140	3.9	8.1	13	16.9	26.7	68.6	23.5	7.9
ВС	140-170	3.9	8.9	16.7	23.5	21.5	74.5	17.7	7.8
C,	170-200	3.7	8.9	15.3	18.5	21.5	66.5	17.2	7.8
pedon 002	GB upper slop	e							
$\mathbf{A}_{_{1}}$	0-29	5.0	9.2	15.0	19.7	25.6	74.5	15.7	9.8
AB	29-66	13.8	9.5	17.0	22.6	27.6	90.2	3.9	5.9
B ₁	66-115	6.9	10.9	22.8	28.0	25.5	94.1	2.0	3.9
B_2	115-161	4.0	14.8	12.3	18.1	21.4	70.6	15.7	13.7
вс	161-200	15.7	15	14.7	22.7	23.1	91.2	2.0	6.8
pedon 003	GB middle slo	pe							
$\mathbf{A}_{\scriptscriptstyle 1}$	0-22	6.5	16.5	16.0	23.3	24.0	85.3	5.9	7.8
AB	22-56	5.3	11	18.6	21.7	27.7	84.3	6.9	8.8
B,	56-88	6.2	11.9	18.6	21.5	18.3	76.5	15.7	7.8
B_2	88-133	10.5	14.3	13.8	20.3	23.5	82.4	4.9	12.7
вс	133-170	5.2	11.0	18.6	26.5	26.9	88.2	4.9	6.9
C,	170-2	6.1	13.7	16.4	18.0	30.1	84.3	3.9	11.8
pedon 004	GB lower slop	e							
$\mathbf{A}_{\scriptscriptstyle 1}$	0-35	9.6	17.9	21.0	17.4	20.4	86.3	4.9	8.8
AB	35-51	6.2	18.4	16.3	23.6	20.8	85.3	5.9	8.8
B,	51-100	5.7	24.8	16.7	19.2	17.9	84.3	6.9	8.8
вс	100-170	6.2	19.7	15.2	20.0	17.6	84.7	6.9	8.8

Table 3: Chemical properties of soils of Orile Igbon toposequence

Horizon	Depth (cm)	рН (H ₂ O) 1) K ⁺⁽ C	mol kg Al ³⁺ 0 kg ⁻¹	C mol ECEC	Org. C	Total N		P (mgkg ⁻¹)	Fe (mgkg ⁻¹)
					%	%			
			pe	edon 001GB sum	mit				
$\mathbf{A_1}$	0-30	5.7	0.09	0.02	1.42	3.9	0.04	28.6	36.22
.00AB	30-55	5.5	0.1	0.02	0.64	2	0.02	21.2	39.01
$\mathbf{B_1}$	55-90	5.4	0.2	0.03	1.15	1.17	0.02	16.2	27.11
\mathbf{B}_2	90-140	5.4	0.24	0.04	1.29	1.04	0.01	12	28
BC	140-170	5.4	0.18	0.02	0.96	0.68	0.01	10.3	24.16
C ₁	170-200	5.3	0.11	0.02	0.62	0.6	0.01	2.5	20.1
				Pedon 002GB	upper slope				
A_1	0-29	5.7	0.14	0.03	1.66	3.5	0.03	28.2	40
AB	29-66	5.4	0.11	0.02	0.75	2	0.02	21.2	38.11
\mathbf{B}_1	66-115	5.3	0.13	0.02	0.78	0.9	0.01	16.2	31
B_2	115-161	5.2	0.12	0.02	0.72	0.7	0.01	12	26
BC	161-200	5	0.11	0.02	0.57	0.5	0.01	10.3	20
				Pedon 003GB	middle slope				
A_1	0-22	5.6	0.12	0.02	1.4	3.7	0.03	26.4	34
AB	22-56	5.5	0.11	0.03	0.91	1.9	0.02	23.4	29
\mathbf{B}_1	56-88	5.4	0.2	0.02	0.97	1.9	0.01	19.2	31
B_2	88-133	5.4	0.18	0.02	0.83	0.8	0.01	10.3	24
BC	133-170	5.2	0.11	0.02	0.68	0.8	0.01	8	21
C ₁	170-200	5	0.1	0.02	0.69	0.06	0.01	6.5	22
				Pedon 004GB	lower slope				
$\mathbf{A_1}$	0-35	5.6	0.12	0.03	1.46	3.6	0.03	21.4	38
AB	35-51	5.5	0.1	0.02	0.86	1.4	0.01	13.2	20.6
$\mathbf{B_1}$	51-100	5.3	0.18	0.03	1.04	1	0.01	8	21
BC	100-170	5.3	0.12	0.02	0.73	0.8	0.01	5.1	20.1

[&]quot;Akande S. A., ²Oparinde, M.D., ¹Bello, B.O., ³Akande R. O., ¹Ganiyu C.P., ¹Olabooye A. O. and ²Esho, G.B.

"Akande S. A., ²Oparinde, M.D., ¹Bello, B.O., ³Akande R. O., ¹Ganiyu C.P., ¹Olabooye A. O. and ²Esho, G.B.

CONCLUSION

According to the study, Orile Igbon soils have beneficial traits like as low amounts of organic matter and exchangeable cations, which Havlin, J. L., Tisdale, S. L., Nelson, W. L., & are signs of good soil fertility and nutrient availability. On the other hand, high sand concentration in some profiles can reduce the capacity to hold nutrients and retain water, which could reduce crop output and cause nutrient Jackson, M. L. (1962). Soil chemical analysis. leaching. To improve these properties, it is essential to implement practices that enhance nutrient and water retention. This can be achieved through amendments such as organic matter or mulch. Organic matter, which includes compost, manure, and plant residues, helps to increase soil porosity, improve water infiltration, and enhance nutrient cycling. Mulching, the application of a protective layer of organic material on the soil surface, can help to reduce water loss through evaporation, conserve moisture, and suppress weed growth (Havlin et al, (2013). Orile-Igbon / Gambari area toposequence seems to have a better soil because of the presence of Low Na⁺ and K⁺ levels indicate low soil salinity and suggest that potassium fertilization may be necessary to improve soil fertility.

REFERENCES

- Akande S. A., Oyediran, G.O., Olatunji, O.O., Olaniyan, M.I., Bello, B.O., Esho, G.B., Oparinde, M.D. (2024) Soil Variability Assessment Of A Basement Complex Soil Of Orile-Igbon/Gambari Area, Ogbomoso Oyo State. Published in the proceeding book of 58th Annual Conference of Agricultural Society of Nigeria (ASN. University of Abuja, 2024
- Brady, N. C., & Weil, R. R. (2017). The nature SAS Institute. (2009). SAS/STAT 9.2 user's and properties of soils (15th ed.). Pearson Education Limited.
- chemistry: An integrative approach. CRC
- Food and Agriculture Organization of the United Nations. (2006). Guidelines for soil description (4th ed.).
- Food and Agriculture Organization of the United Nations; Intergovernmental Technical world's soil resources (SWSR) — Main FAO. report. https://www.fao.org/3/i5199e/I5199E.pdf
- Foth, H. D. (1990). Fundamentals of soil science (8th ed.). John Wiley & Sons.
- Gee, G. W., & Or, D. (2002). Particle-size Weinheim, J. (2012). Soil science: Principles and analysis. In J. H. Dane & G. C. Topp (Eds.),

- Methods of soil analysis: Part 4—Physical methods (SSSA Book Series, Vol. 5, pp. 255-293). Soil Science Society of America.
- Beaton, J. D. (2014). Soil fertility and fertilizers: An introduction to nutrient management (8th ed., Global Edition). Pearson Education Limited.
- Englewood Cliffs, NJ: Prentice-Hall.
- Jenny, H. (1994). Factors of soil formation: A system of quantitative pedology. Dover Publications.
- Nelson, D. W., and Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, R. H. Miller, and D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed., pp. 539-579). Madison, WI: American Society of Agronomy.
- Odu, C. T. I., Esu, I. E., Ogunwale, J. A., & Balogun, O. (1986). Laboratory manual for agronomic studies in soil, plant and microbiology. Department of Agronomy, University of Ibadan, Nigeria.
- Ogunkunle, A. O. (1986). Spatial variability of some chemical properties in two Ultisol mapping units in southern Nigeria. Soil Survey and Land Evaluation, 6, 26–32.
- Olatunji, O. O., and Ewetola, E. A. (2015). Spatial Variability of Soil Morphorlogical Physico-Chemical Properties in Ladoke Akintola University of Technology Plantation, Ogbomoso. Cashew International Journal of Applied Agricultural and Apicultural Research (IJAAAR), 11 (1and2); 137-145, 2015.
- guide (2nd ed.). Cary, NC: SAS Institute Inc.
- Essington, M. E. (2004). Soil and water Senjobi, B. A., Akinsete, S. J., Ande, O. T., Senjobi, C. T., Aluku, M. & Ogunkunle, O. A. (2013). An Assessment of Spatial Variations of Some Soil Properties under Different Land Uses in South-Western Nigeria. Journal of Experimental Agriculture International, 3(4), 896-903. DOI:10.9734/AJEA/2013/3572.
 - Panel on Soils (ITPS). (2015). Status of the Thomas, G. W. (1982). Exchangeable cations. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed., pp. 159–165). Madison, WI: American Society of Agronomy.
 - applications. New York: Wiley.