Impact of Atrazine and Biochar Pre-treatment on Soil and **Leachate Properties**

Abiodun Ebenezer Egbinade¹, Yusuf Victor Oluwasegun¹ and Yetunde Bunmi Oyeyiola¹. Faculty of Agricultural Science, Ladoke Akintola University of Technology, Nigeria. Corresponding Author: aeegbinade52@pgschool.lautech.edu.ng +2348161201898.

ABSTRACT

Atrazine is a widely used herbicide in agriculture, but its persistence and mobility in soils and water pose ecological and health risks, however, biochar a carbon rich solid product of biomass pyrolysis, has been proposed as a strategy to reduce herbicide leaching and improve soil quality. This study assessed the effects of atrazine application (at manufacturers, adjusted lower and higher rates of 3.0, 1.5 and 4.5 kg of the active ingredients ha⁻¹ and biochar pre-treatment (*Tithonia diversifolia*, TD and TD + bonemeal, applied at 3 t ha⁻¹) on soil and leachate properties in soils with contrasting organic carbon contents. A factorial leaching column experiment was conducted with 72 experimental units, using 250 g soil columns under screen-house conditions. Results revealed that, Nitrate leaching reached 9.7 mg L⁻¹ in LOC compared to 8.9 mg L⁻¹ in high organic carbon (HOC) soils, while phosphate losses ranged from 0.00 to 0.35 mg L⁻¹. Biochar amendments enhanced soil quality by increasing organic carbon (up to 3.32%) and available phosphorus (up to 105.3 mg kg⁻¹), but this led to short-term nutrient leaching, with leachate electrical conductivity (EC) rising to 1780 µS cm⁻¹ in amended HOC soils compared to 664 µS cm⁻¹ in the control. Overall, biochar, particularly TD + bonemeal, reduced atrazine mobility and improved soil fertility, though its effectiveness was soildependent and required careful rate management to minimize leaching risks.

Keywords: Atrazine, Biochar, Soil organic carbon, Leaching

INTRODUCTION

agriculture, providing efficient weed Control and sustaining crop productivity (Marcato et al, 2017). Among them, atrazine, a chlorinated triazine and photosystem II (PSII) inhibitor, is one of the most widely used because of its broad-spectrum control of both broadleaf and grassy weeds, particularly in major crops such as maize, sorghum, and sugarcane (Yang et al, 2021; Vizioli et al, 2023). However, atrazine's persistence in soil (half-life ranging from 13 to 261 days) and tendency to migrate into groundwater raise significant ecological and public health concerns (U.S. EPA, 2003; Zhao et al, 2023). Atrazine residues have been detected in surface water and groundwater worldwide, threatening aquatic ecosystems and drinking water safety (Giddings *et al*, 2023).

Soil organic matter (SOM) strongly influences the fate of atrazine, higher SOM enhances its sorption and reduces mobility, thereby affecting its persistence and availability in soils (Fiore et al, 2022; Wang et al, 2023). High organic carbon soils adsorb atrazine, reducing its Materials and Methods bioavailability and mobility, while low organic

erbicides play an integral role in modern carbon soils promote leaching and persistence (Smith et al, 2020; Rodríguez-Camacho et al, 2021). The ecological impact is further compounded by atrazine's effect on soil microbial diversity, respiration, and enzyme activity (Singh et al, 2023).

> To mitigate these risks, soil amendments such as lime, phosphate, and biochar have been explored (Xu et al, 2020). Biochar, a carbon-rich solid product derived from biomass pyrolysis, enhances soil structure and functionality by improving porosity, cation exchange capacity (CEC), and water retention, while also reducing herbicide mobility and bioavailability (Xie et al, 2024; Aldana et al, 2024) Recent studies confirm biochar's effectiveness in adsorbing contaminants and stimulating microbial degradation (Kolton et al, 2017; Yavari et al, 2022).

> This study investigated the combined effects of atrazine with and without biochar pre-treatment on selected soil and leachate properties.

Soil Sampling

Two soils with contrasting organic carbon simulated using drip application of distilled contents were studied. Low organic carbon water at 80 ml per column a week after (LOC) soil was collected from arable land at the agrochemical application. The experiment was a Teaching and Research Farm, Ladoke Akintola factorial combination of three atrazine University of Technology (LAUTECH), Ogbomoso Oyo state, while high organic carbon (HOC) soil was obtained from a woodlot near Olusegun Oke Library, LAUTECH, Ogbomoso, Oyo State, Nigeria Located in the Derived Southern Guinea savannah agro-ecological zone of Nigeria located on 8°10′N latitude and 4°10′E longitude. Soils were sampled at 0–15 cm depth, air-dried, crushed, sieved (2 mm) and subjected to initial physico-chemical characterization following standard laboratory procedures.

Biochar Production

The biochar studied was produced from dried Tithonia diversifolia (TD) biomass, with and without bone meal (BM), at 350 °C for 15 minutes resident time to give sole TD (tagged B1) and TD + bonemeal (tagged B2). The biochar were pulverized, and stored in an air tight polyethylene bags. TD biochar was designated **B1**, and TD + BM biochar was designated **B2**.

Treatments and Experimental Design

A leaching column experiment was established using a completely randomized design (CRD). Treatments consisted of three atrazine application rate (lower rate (tagged Atr L), manufacturer's rate (tagged Atr M) and higher rate (tagged Atr H) with and without biochar (B1, B2) pre-treatment applied to both LOC and HOC soils. Each treatment was replicated three times, to give 72 experimental units.

Experimental Setup

Polyvinyl chloride (PVC) pipes (23 cm height, 4 cm inner diameter) were used as leaching columns. Each was filled with 250 g of 2 mm sieved soil, lined at one end with a triple-fold nylon mesh placed over a leachate collection cup. Biochar was applied at 5 t/ha (0.63 g per 250 g soil) and mixed within the top 5 cm soil depth. Preliminary trials estimated 60 and 87 ml of water respectively needed to take the LOC and HOC soil to field capacity. The biochar was thereafter left to equilibrate in each column for two weeks. This was followed by atrazine application in appropriate leaching columns along side basal NPK 15-15-15 application at 60 kgN/ha (equivalent to 0.03 g/250g soil). The whole setup was kept covered with aluminum foil under screen house condition. Leaching was

application rates, two soil types with or without two biochar pre-treatment, soils that received rather atrazine and biochar were included for comparison. Each treatment was replicated three times to give 72 experimental unit. The treatment summary is giving thus:

Sole atrazine applied at manufacturer's rate of 3.0 kg a.i/ha equivalent to 0.38 µkg/250g soil (tagged Atr M)

Atrazine applied at manufacturer's rate with type 1 biochar (tagged Atr M + B1)

Atrazine applied at manufacturer's rate with type $2 \operatorname{biochar} (\operatorname{tagged} \operatorname{Atr} M + B2)$

Sole atrazine applied at higher rate of 4.5 kg a.i/ha equivalent to 0.56 µkg/250g soil (tagged Atr H)

Atrzine applied at higher rate with type 1 biochar (taggedAtrH+B1)

Atrzine applied at higher rate with type 2 biochar (taggedAtr H + B2)

Sole atrazine at lower rate of 1.5 kg a.i/ha equivalent to 0.19 µkg/250g soil (tagged Atr L) Atrazine applied at lower rate with type 1 biochar (taggedAtrL+B1)

Atrazine applied at lower rate with type 2 biochar (taggedAtr L+B2)

Sole biochar type 1 (B1)

Sole Biochar type 2 (B2)

Absolute Control that will receive neither herbicide nor biochar (tagged AC)

The leachate collected were stored in plastic sampling bottles at 4 °c prior to lab leachate properties evaluation. Maize was thereafter sown at one plant per column and nurtured for three weeks. Post harvest soil sampling was carried out in each column and the soil were prepared for laboratory analyses

Data Collection

Volume of leachate collected per treatment was taken using a measuring cylinder, immediately after collection the leachate collected were subjected to pH, electrical conductivity EC, Total dissolved solid TDS, NO₃ N and PO₄ content determination following standard procedure. Calibrated pH, EC and TDS meter were utilized for the determination of the leachate pH, EC and TDS. The UV spectrophotometric was used for the determination of NO₃ N content in the leachate after digestion with KCl while the molybdenum blue colorimetric method was followed for PO₄ leachate content determination after ascorbic acid reduction.

The soil sampled from each leaching column

after maize harvesting were subjected to pH, EC, nitrogen content followed a similar trend with B1 Organic carbon and available P determination. The pH and EC were determined from soil and distilled water mixture at ratio 1:2 using earlier calibrated pH and EC meter. The walkey black procedure was followed for organic carbon determination while mehlich - 3 extractant was utilized for available P extraction from the soil.

Statistical Analysis

Data collected were subjected to ANOVA using Gensat statistical package, and treatment means values generated were separated using LSD at significant level of 5%.

Results and Discussions

Characteristics of the experimental soil and tested biochar

The characteristics of experimental soil is shown in Table 1, the low organic carbon (LOC) soil was slightly alkaline (pH 7.59) with low electrical conductivity (183.69 µS cm⁻¹), depleted in organic carbon (0.73%), and relatively higher in total nitrogen (0.62 g kg⁻¹) compared with the high organic carbon (HOC) soil with 1.44 % organic carbon and 0.21 g kg⁻¹ total nitrogen TN. The LOC soil also had lower concentrations of exchangeable bases (Ca = 2.85, Mg = 0.62, K =0.13, Na = 0.09 cmol kg⁻¹) and available phosphorus (5.86 mg kg⁻¹). In contrast, the HOC soil was slightly alkaline (pH 7.24) with higher electrical conductivity (306.57 μS cm⁻¹), greater organic carbon (1.44%), and higher levels of Ca (9.23 cmol kg⁻¹), Mg (1.58 cmol kg⁻¹), K (0.27 cmol kg⁻¹), Na (0.34 cmol kg⁻¹), and available phosphorus (7.75 mg kg⁻¹). Texturally, the LOC soil had a higher clay content (120 g kg⁻¹) compared with HOC (37 g kg⁻¹), while the HOC soil was sandy. Overall, the LOC soil was more nutrient-depleted but finer-textured, whereas the HOC soil was richer in organic matter and bases but coarser-textured.

Characteristics of biochar tested

Table 2 shows the characteristics of biochar tested. Significant differences were observed between the two biochars tested, B1 and B2, across all measured parameters. Ash content was higher in B2 (84.7%) compared to B1 (20.04%), representing more than a 320% increase. Both biochars were strongly alkaline, with B1 showing a slightly higher pH (10.86) than B2 (10.52). Electrical conductivity (EC) was greater in B1 (6.35 mS/cm), which was more than double the value recorded for B2 (3.05 mS/cm). Carbon content was dominant in B1 (58.7%), exceeding B2's value (14.41%) by over 300%, while

(1.07%) higher than B2 (0.84%). Conversely, phosphorus was relatively low in both biochars but slightly higher in B2 (0.07%) than B1 (0.02%). Potassium content was greater in B1 (0.42%) compared to B2 (0.28%), while calcium levels were higher in B2 (0.32%) than B1 (0.17%).

Table 1. Selected characteristics of the soil studied

•	VALUES			
PARAMETERS	LOC	HOC		
pH (H2O)	7.59	7.24		
EC (µs/cm)	183.69	306.57		
Available P (mehlich) Total	5.86	7.75		
N (g/kg)	0.62	0.21		
Organic C (%)	0.73	1.44		
Ex. Cations (cmol/kg)				
Ca	2.85	9.23		
Mg	0.62	1.58		
K	0.13	0.27		
NA	0.09	0.34		
Particle Size (g/kg)				
Sand	780	889		
Silt	100	74		
Clay	120	37		

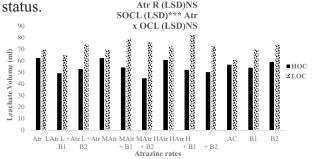
Table 2: characteristics of the biochar studied

Biochar parameters	B1	B2
Ash (%)	20.04	84.7
pН	10.86	10.52
EC (mS/cm)	6.35	3.05
C (%)	58.7	14.41
N (%)	1.07	0.84
P (%)	0.02	0.07
K (%)	0.42	0.28
Ca (%)	0.17	0.32

Effects of different atrazine rates in soil with contrasting organic carbon content on leachate volume

The effects of different atrazine rates in soils with contrasting organic carbon content on leachate volume is shown in Fig. 1. Leachate volume was significantly influenced by soil organic carbon (OC) content but not by the different atrazine rate. Leachate volume ranged from 49.3 ml (in

L + B1) to 62.3 ml (in Atr L and Atr M) in HOC


soil while a range of 69.7 ml (in Atr L and Atr M) to 82.3 ml (in Atr H + B1) was observed in LOC soil. Atrazine alone did not alter leachate volume significantly compared with AC (58.7 ml). For instance, Atr L and Atr M averaged 66.0 ml, a marginal increase of 12% relative to AC, while Atr H recorded 66.5 ml (13% higher). Biochar-modified treatments altered volumes differently depending on OC level. In HOC soils, B1 and B2 reduced leachate volumes by 7–20% compared to atrazine-only soils. In LOC soils, B1 and B2 increased leachate volumes by 6–19%. The highest volume (82.3 ml) occurred in LOC soils under Atr H + B1, a 35% increase compared to AC. Sole biochar treatments (B1 and B2) produced moderate leachate volumes (61.8–66.2) ml), 5-13% higher than AC (58.7 ml).

This observation indicates that biochar benefits water retention in high SOM soils, but in low SOM

systems it may accelerate water fluxes due to incomplete stabilization of fresh biomass. These findings support Mukherjee and Lal (2013), who showed biochar enhances water retention and lowers leachate in organic-rich soils, while Niemeyer et al, (2023) reported higher drainage volumes in low-SOM soils under herbicide treatments. The divergence in effects between HOC

and LOC soils is consistent with Lehmann et al (2011), who stressed soil carbon status as key to biochar performance. Similarly, Tejada et al (2011) observed that organic amendments can improve structure in fertile soils but destabilize water balance in degraded soils. Overall, atrazine alone had little effect on leachate, but biochar's impact was strongly conditioned by soil OC status.

Atr R (LSD)NS

Atr= Atrazine, Atr R= Atrazine rate, Atr L= Atrazine at lower rate, Atr M= Atrazine at manufacturer's rate, Atr H= Atrazine at higher rate, B1= sole *Tithonia diversifolia*, B2= *Tithonia diversifolia* + Bonemeal, SOCL= Soil organic carbon level, AC= Absolute control, HOC= High organic carbon soil, LOC= Low organic carbon soil, LSD= least significant mean at 5%.

Effects of different atrazine rates in soils with contrasting organic carbon content on leachate and soil pH

The effects of different atrazine rates and organic carbon levels on leachate and soil pH are presented in Table 3. The leachate pH was significantly influenced by atrazine rate (p < 0.01) and soil organic carbon (OC) level (p < 0.001), while their interaction was not significant. Leachate pH values ranged from 7.21 (in Atr M) to 7.68 (in Atr H + B2) in LOC while a range of 7.85 (in Atr H) to 8.35 (in Atr L + B2) was observed in HOC. The LOC soil consistently produced less alkaline leachate conditions, averaging around 7.3, compare to more alkaline leachate, averaging near 8.0 in HOC soil. Soil pH was significantly affected by atrazine rates, SOC level, and their interaction (p < 0.001), with values spanning from 6.78 (in Atr M + B1, HOC) to 7.61 (in Atr M + B2, LOC). Atrazine application alone resulted in a 2–4% reduction in soil pH relative to the absolute control (AC, 7.24). In contrast, the incorporation of biochar (B1 and B2) moderated this effect by raising soil pH by 2-5% above AC. The highest pH was observed in Atr M + B2 (7.41), representing a 2.3% increase over AC. Sole biochar treatments (B1 and B2) also maintained soil pH near neutrality (7.35-7.42), confirming their consistent liming effect.

The acidifying trend observed can be attributed to the production of weak organic acids during atrazine degradation. These results are consistent with the findings of Kabir *et al* (2023), who reported that biochar effectively neutralized acidity and elevated soil pH in atrazine-contaminated soils. Likewise, Udomkun *et al* (2025) observed that biochar amendments buffered herbicide-induced acidification, reinforcing the protective and pH-stabilizing capacity of biochar observed in this study. Overall, atrazine alone slightly acidified soils, but biochar effectively counteracted this effect, particularly in high-organic-carbon soils where

Table Historical arrangement of the contrasting contra

		Leachate	pН		Soft pH	
	Soil org	anic carbon				
	level			Soil orga	nic carbon lev	el
Atrazine Rates	HOC	LOC	Mean	HOC	LOC	Mean
Atr L	8.06	7.32	7.69	7.10	7.07	7.89
Atr L + B1	7.88	7.34	7.61	6.92	7.19	7.05
Atr L + B2	8.35	7.46	7.90	7.22	7.19	7.20
Atr M	7.93	7.21	7.57	7.11	7.31	7.21
Atr M + B1	8.02	7.36	7.69	6.78	7.39	7.09
Atr M + B2	8.21	7.35	7.78	7.20	7.61	7.41
Atr H	7.85	7.29	7.57	7.02	7.43	7.22
Atr H + B1	8.23	7.32	7.77	7.17	7.08	7.13
Atr H + B2	8.03	7.68	7.85	7.03	7.04	7.04
Mean	8.63	7.37		7.06	7.26	
Atr R(LSD)	9.0			***		
SOCL (LSD)	***			***		
Atr R x SOCL (LSD)	NS			***		

Checks AC						
Bl	7.82	7.42	7.62	7.24	7.59	7.42
B2	7.71	7.62	7.67	7.20	7.50	7.35
B2	7.91	7.90	7.71	7.39	7.26	7.32

Atr= Atrazine, Atr L= Atrazine at lower rate, Atr M= Atrazine at manufacturer's rate, Atr H= Atrazine at higher rate, B1= sole *Tithonia diversifolia* biochar, B2= *Tithonia diversifolia* + Bonemeal biochar, SOCL= Soil organic carbon level, AC= Absolute control, HOC= High organic carbon soil, LOC= Low organic carbon soil, LSD= least significant difference mean at 5%.

Effects of different atrazine rates in soils with contrasting organic carbon content on leachate and soil Electrical conductivity EC

The effects of different atrazine rates and organic carbon levels on leachate and soil EC are presented in Tables 4. Leachate EC was significantly influenced by atrazine rate and soil organic carbon level, while their interaction was not significant. Soil EC, on the other hand, was significantly affected by atrazine rate, SOC level and their interaction. Leachate EC values ranged from 892 μ S cm⁻¹ (in Atr L) to 1298 μ S cm⁻¹ (in Atr L + B1) in LOC while $1029 \mu S cm^{-1}$ (in Atr H) to $1829 \,\mu\text{S cm}^{-1}$ (in Atr L + B1) was observed in HOC. Soil EC values ranged from 77.0 µS cm^{-1} (Atr M + B1, LOC) to 366.3 μ S cm^{-1} (Atr M + B1, HOC), Atrazine application alone increased ionic concentrations in both leachate and soil EC compared with the absolute control (AC). For leachate EC, Atr L, Atr M, and Atr H recorded 1025, 1050, and 1123 μS cm⁻¹ respectively, representing increases of 54–69% above AC (664 µS cm⁻¹). Soil EC followed a similar trend, with Atr H (274 µS cm⁻¹) increasing by 12% over AC (245 µS cm⁻¹), while Atr L and Atr M recorded slight reductions values (216–239 μS cm⁻¹). Biochar treatments further altered EC dynamics, and the direction of change depended on SOC level. In HOC soils, biochar sharply increased leachate EC, with Atr L + B1 recording the highest value (1829 µS cm⁻¹), a 175% increase compared with AC. Sole biochar treatments also raised leachate EC, with B1 and B2 increasing values by 104% and 77% compared with AC, respectively.

Soil EC, however, responded differently to biochar additions. In HOC soils, Atr M + B1 produced the highest soil EC (366.3 μ S cm⁻¹), 8% higher than Atr M. By contrast, biochar in LOC soils tended to lower soil EC values

 $(77-235~\mu S~cm^{-1})$, sometimes below the AC. Sole biochar treatments (B1 = 135 $\mu S~cm^{-1}$; B2 = 133 $\mu S~cm^{-1}$) reduced soil EC by 45–46% compared with AC.

These findings indicate that atrazine generally enhanced ionic mobility in leachates while moderately increasing soil ionic concentration. This pattern is consistent with Niemeyer et al (2023), who observed higher ionic conductivity in herbicide-impacted soils lacking strong retention capacity, but contrasts with Omara et al (2023), who found that biochar addition did not significantly increase soil electrical conductivity, implying ion stabilization under their conditions. The discrepancy may stem from the rapid decomposition of fresh Tithonia residues in this study, which released soluble ions faster than biochar surfaces could immobilize them. The contrasting responses between high-organiccarbon (HOC) and low-organic-carbon (LOC) soils align with the observation by Boostani et al (2023), who reported significant increases in soil EC following biochar additions under various

treatments.
Table 4: Effects of different atrazine rate and organic carbon levels on leachate and soil Electrical conductivity EC

Leachate EC (μScm ⁻¹)			Soil EC (µScm ⁻¹)			
Soil org	anic carbon level		Soil organ	nic carbon level		
HOC	LOC	Mean	HOC	LOC	Mean	
1158	892	1025	291.0	141.00	216.00	
1829	1298	1564	195.0	111.70	153.30	
1425	1163	1294	312.3	95.70	204.00	
1123	978	1050	335.7	143.00	239.30	
1444	1197	1320	366.3	77.00	221.70	
1641	1173	1407	256.3	123.00	189.70	
1029	1216	1123	321.0	227.00	274.00	
1369	1224	1296	196.3	213.30	204.00	
1624	1055	1339	217.67	235.67	226.70	
1405	133		276.9	151.90		
**			***			
***			***			
NS			***			
739	589	664	306.67	183.67	245.17 135.17	
	HOC 51158 1829 1425 1123 1444 1641 1029 1369 1624 1405 ** *** NS	1158 892 1829 1298 1425 1163 1123 978 1444 1197 1641 1173 1029 1216 1369 1224 1624 1055 1405 133 ** ** NS	HOC LOC Mean 1158 892 1025 1829 1298 1564 1425 1163 1294 1123 978 1050 1444 1197 1320 1641 1173 1407 1029 1216 1123 1369 1224 1296 1624 1055 1339 1405 133 *** **** **** NS *** 739 589 664	HOC LOC Mean HOC 1158 892 1025 291.0 1829 1298 1564 195.0 1425 1163 1294 312.3 1123 978 1050 335.7 1444 1197 1320 366.3 1641 1173 1407 256.3 1029 1216 1123 321.0 1369 1224 1296 196.3 1624 1055 1339 217.67 1405 133 276.9 *** *** NS **** 739 589 664 306.67	Soil organic carbon level HOC Mean LOC Soil organic carbon level HOC Mean LOC Soil organic carbon level HOC LOC 1158 892 1025 291.0 141.00 1829 1298 1564 195.0 111.70 1425 1163 1294 312.3 95.70 1123 978 1050 335.7 143.00 1444 1197 1320 366.3 77.00 1641 1173 1407 256.3 123.00 1029 1216 1123 321.0 227.00 1369 1224 1296 196.3 213.30 1624 1055 1339 217.67 235.67 1405 133 276.9 151.90 *** *** NS *** 739 589 664 306.67 183.67	

Atr – Atrazine, Atr L= Atrazine at lower rate, Atr M= Atrazine at manufacturer's rate, Atr H= Atrazine at higher rate, B1= sole Tilhonia diversilolia biochar, B2= Tilhonia diversilolia + Bonemeal biochar, SCCL= Soil organic carbon level, AC= Absolute control, HOC= High organic carbon soil, LOC= Low organic carbon soil, LSD= least significant difference mean at

Effects of different atrazine rate and organic carbon levels on Leachate NO₃-N and Po₄³⁻

The effects of different atrazine rates and organic carbon levels on leachate nitrate (NO₃⁻-N) and phosphate (PO₄³⁻) concentrations are presented in Table 5. Both NO₃⁻-N and PO₄³⁻ were significantly affected by atrazine rate, soil organic carbon level, and their interaction. Nitrate concentrations in leachate ranged from 6.37 mg L⁻¹ (in Atr L + B2, LOC) to 9.84 mg L⁻¹ (in Atr M + B2, HOC), while leachate phosphate content were generally much lower, ranging from 0.00 mg L⁻¹ (several LOC treatments) to 0.35 mg L⁻¹ (in Atr L + B2, HOC). Atrazine alone increased nitrate leaching compared with the

absolute control (AC, 7.50 mg L⁻¹) with increasing atrazine rate. For example, nitrate concentration of leachate from Atr L, Atr M and Atr H were 8.50, 9.10 and 9.28 mg L^{-1} respectively, representing increases of 13-24% higher nitrate content in leachate from AC. Phosphate leaching under atrazine-only treatments remained relatively low (0.04–0.26 mg L^{-1}) but still exceeded AC (0.126 mg L^{-1}) in some cases, showing increases of up to 40%. In HOC soils, Atr M + B2 recorded the highest nitrate concentration (9.84 mg L⁻¹), a 4% increase compared with Atr M. In LOC soils, nitrate values were more variable, with Atr L + B2 showing a reduction (6.37 mg L^{-1} , 15% below AC), while Atr M + B2 increased nitrate leaching to $9.18 \,\mathrm{mg}\,\mathrm{L}^{-1}$, 4% above Atr M.

Phosphate concentrations in leachate were generally low, ranging from 0.00 mg L⁻¹ (in several LOC treatments) to 0.35 mg L^{-1} (in Atr L + B2, HOC). Atrazine application alone resulted in phosphate losses compared with the absolute control (AC = 0.126 mg L^{-1}). Specifically, Atr L, Atr M, and Atr H recorded phosphate concentrations of 0.09, 0.04, and 0.26 mg L^{-1} , representing a 28.6% decrease, 68.3% decrease, and 106% increase, respectively, relative to the AC. The addition of biochar modified these trends differently across soils. In HOC soils, Atr L + B1 completely suppressed phosphate leaching (0.00 mg L^{-1} , a 100% reduction compared with Atr L), while Atr L + B2 markedly increased losses to 0.35 mg L⁻¹, a 289% rise relative to Atr L. Similarly, Atr M + B1 and Atr M + B2 recorded 0.20 mg L^{-1} and 0.10 mg L^{-1} , representing 400% and 150% increases compared with Atr M, respectively. For Atr H treatments, the addition of biochar reduced phosphate leaching to $0.03 \text{ mg L}^{-1} (\text{Atr H} + \text{B1})$ and 0.06 mg L^{-1} (Atr H + B2), corresponding to 88.5% and 77% decreases compared with Atr H (0.26 mg L⁻¹). Sole biochar checks (B1 and B2) exhibited extremely low phosphate concentrations (0.002–0.003 mg L^{-1}), about 98% lower than the control, confirming biochar's strong phosphate-retentive capacity, particularly in the absence of herbicide application.

Table 5. Effects of different atrazine rate and organic carbon levels on Leachate NO₃⁻-N and

OATrazine Rates	NO ₃ - N leached (mgf ³) Soil organic carbon level			PO, leached (mgf²) Soil organic carbon level		
Atrazine Rates	нос	LOC	Mean	HOC	LOC	Меан
Atr L	9,32	7,69	8.50	0,09	0,00	0.04
An F D1	9.54	9.53	9.53	0.00	0.00	0.00
Atr L + B1	9.80	6.37	8.08	0.35	0.00	0.18
Atr L + B2	9.80	0.37	6.06	0.33	0.00	0.18
Atr M	9.42	8.78	9.10	0.04	0.20	0.12
	9.65	8.82	9.23	0.20	0.00	0.10
Atr M + B1						

Atr M + B2	9.84	9.18	9.51	0.10	0.00	0.05
Atr H	8.89	9.68	9.28	0.26	0.02	0.14
Atr H + B1	9.65	8.08	8.86	0.03	0.00	0.02
	9.81	8.20	9.01	0.06	0.00	0.03
Atr H + B2 Mean	9.55	8.48		0.13	0.02	
Atr (LSD)	***			***		
OCL (LSD) Atr x OCL (LSD)	***			***		
Checks AC						
B1	8.25	6.75	7.50	0.252	0.00	0.126
B2	0.45	0.45	0.45	0.003	0.002	0.002
	0.71	0.45	0.58	0.003	0.003	0.003

Att= Attazine, Art L= Atrazine at lower rate, Art M= Atrazine at manufacturer's rate, Art H= Atrazine at higher rate, B1= sole Tithonia diversifiolia biochar, B2= Tithonia diversifiolia + Bonemeal biochar, SOCL= Soil organic carbon level, AC= Absolute control, HOC= High organic carbon soil, LOC= Low organic carbon soil, LSD= least significant difference mean at

Effects of different atrazine rate and organic carbon levels on soil organic carbon and available phosphorus.

The effects of different atrazine rates and organic carbon levels on soil organic carbon (SOC) is presented in Fig 2. Soil organic carbon was significantly affected by atrazine rate, soil organic carbon level, and their interaction. The SOC values ranged from 0.74% (in Atr L, LOC) to 3.32% (in Atr H + B1, HOC). Sole atrazine use significantly reduced SOC by 6% and 4% in HOC(by Atr M) and LOC (by Atr L) respectively. Pre-treated sole soils with biochar consistently increased SOC in both soil (except in Atr M + B1). the B1 was superior to B2 in enhancing SOC at all atrazine rate except at Atr M in both soils. In HOC B1 increase SOC by 6% and 23 % at Atr L and Atr H respectively and by 82 % and 102 % respectively in LOC. The B2 pre-treatment however responsible for higher SOC enhancement in HOC and LOC soil at manufacturers application rate with 17 % and 25 % respectively relative to sole Atr M. similar higher organic carbon content AC were observed from soils treated with sole biochar regardless the type.

The effects of different atrazine rates and organic carbon levels on soil organic carbon (SOC) is presented in Fig 3. Available P was significantly affected by atrazine rate, soil organic carbon (OC) level, and their interaction. The available P values ranged from 9.66 mg kg⁻¹ (in Atr H, LOC) to $105.25 \text{ mg kg}^{-1}$ (in Atr L + B2, LOC). Sole atrazine use generally reduced available phosphorus in both soils, with decreases of 13% and 23% observed in HOC (by Atr M) and LOC (by Atr H) respectively, relative to the control. Pre-treated soils with biochar consistently enhanced available P across all treatments, with the magnitude of increase varying by biochar type and soil organic carbon level. The B2 biochar was superior to B1 in enhancing available P at nearly all atrazine rates,

particularly in LOC soils. In HOC soils, B1 increased available P by 24% and 46% at Atr L and Atr H, respectively, compared with the corresponding sole atrazine treatments. In LOC soils, however, the increase was far greater, B1 raised available P by 35% and 42% at Atr L and Atr H, respectively. The B2 pre-treatment produced the highest increases in available P at the manufacturer's rate (Atr M) in both soils, elevating P by 28% in HOC and 91% in LOC relative to sole Atr M. Notably, Atr L + B2 in LOC soil exhibited the greatest overall enhancement, with available P rising to 105.25 mg kg⁻¹, nearly eight times higher than the control (12.53 mg kg⁻¹). Similar improvements in available P were observed in soils treated with sole biochar, regardless of type, confirming the strong Preleasing and retention capacity of biochar, especially when enriched with mineral additives such as bone meal.

These findings are consistent with Lehmann *et al* (2011), who reported that biochar improves SOC through stable carbon inputs and enhances nutrient retention. They also agree with Zheng *et al* (2013), who observed improved soil P status with biochar application under herbicide stress. Joseph *et al* (2021) similarly highlighted that biochar can release additional nutrients when enriched with mineral additives such as bone meal, explaining the exceptionally high available P values observed here. Conversely, the decline in SOC and P under atrazine-only treatments aligns with Tejada *et al* (2011), who reported that herbicide residues degrade soil organic matter quality and putrient availability.

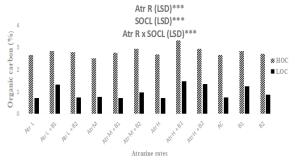


Fig2: Effects of different atrazine rate and organic carbon levels on soil organic carbon.

Atr= Atrazine, Atr R= Atrazine rate, Atr L= Atrazine at lower rate, Atr M= Atrazine at manufacturer's rate, Atr H= Atrazine at higher rate, B1= sole *Tithonia diversifolia*, B2= *Tithonia diversifolia* + Bonemeal, SOCL= Soil organic carbon level, AC= Absolute control, HOC= High organic carbon soil, LOC= Low organic carbon soil, LSD= least significant mean at 5%.

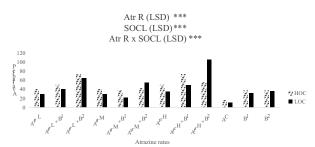


Fig 3. Effects of different atrazine rate and organic carbon levels on soil available P.

Atr=Atrazine, Atr R=Atrazine rate, Atr L=Atrazine at lower rate, Atr M= Atrazine at manufacturer's rate, Atr H= Atrazine at higher rate, B1= sole *Tithonia diversifolia*, B2= *Tithonia diversifolia* + Bonemeal, SOCL= Soil organic carbon level, AC= Absolute control, HOC= High organic carbon soil, LOC= Low organic carbon soil, LSD= least significant mean at 5%.

Conclusion

This study highlights that atrazine application alone reduced soil organic carbon by 5–9% (from a baseline of 1.72%) and available phosphorus by 15 - 40% (from 12.53 mg kg⁻¹), while increasing leachate TDS by 55 – 71% (333 – 569 mg L⁻¹), EC by 54 – 69% (664 – 1123 μ S cm $^{-1}$), nitrate leaching by 13–24% (up to 9.28 mg L $^{-1}$), and phosphate losses by up to 40%. Biochar pretreatment markedly improved soil fertility, raising SOC by up to 93% (to 3.32%) and available P by 800% (to 105.25 mg kg⁻¹), but also amplified leachate solute loads in highcarbon soils, increasing TDS and EC by up to 177% and 175%, respectively. Sole biochar treatments, however, reduced nitrate and phosphate leaching by 94% and 98% while moderately enhancing SOC and available P. Overall, atrazine use poses risks of soil carbon and phosphorus depletion and increased nutrient leaching, but biochar pretreatment offers a sustainable strategy to mitigate these impacts if carefully managed to balance fertility gains with environmental safety.

References

Aldana, J. C., Peña, J. C., Torres, C. A., & León, J. D. (2024). Biochar improves soil physicochemical properties and reduces contaminant mobility in agroecosystems. *Environmental Science and Pollution Research*, 31(5), 6235–6248.

Dierickx, J., Leterme, B., Diels, J., & Boeckx, P. (2020). Nitrate leaching under different soil organic matter conditions in herbicide-treated soils. *Nutrient Cycling in Agroecosystems*, 116(2), 213–227.

Fiore, S., Zanetti, M. C., Ruffino, B., & Genon, G. (2022). Influence of soil organic matter on herbicide sorption and persistence. *Science of the Total Environment*, 838, 156149.

- Giddings, J. M., Hall, L. W., & Solomon, K. R. (2023). Global monitoring of atrazine in surface waters and groundwater: Ecological risks and regulatory implications. Integrated Environmental Assessment and Management, 19(3), 456–470.
- Joseph, S., Kammann, C., Shepherd, J., Conte, P., Schmidt, H. P., Hagemann, N., ... Lehmann, J. (2021). Microstructural properties and nutrient retention of biochar-soil systems. Nature *Sustainability*, *4*(7), 518–529.
- Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E. R., Elad, Y., & Cytryn, E. (2017). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 83(9), e00322-17.
- Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota: A review. Soil Biology and Biochemistry, *43*(9), 1812–1836.
- Marcato, C. E., Pinelli, E., Pouech, P., Winterton, P., & Guiresse, M. (2017). Bioavailability of atrazine and its metabolites in Xie, X., Zhao, L., Zhang, Q., & Li, H. (2024). agricultural soils. Chemosphere, 177, 343-350.
- Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313–339.
- Niemeyer, J. C., Santos, V. S., Silva, E. S., & Andrade, R. S. (2023). Herbicide impacts on soil chemical dynamics and leachate composition in contrasting soils. Journal of Environmental Quality, 52(1), 88–101.
- Rodríguez-Camacho, J. M., Silva, C. M., & Pereira, J. L. (2021). Atrazine mobility and persistence in low organic matter soils: Environmental risk assessment. Environmental Monitoring and Assessment, 193, 312.
- Singh, N., Dubey, S. K., & Pandey, R. S. (2023). Atrazine-induced changes in soil microbial community structure and

- enzyme activity. Ecotoxicology and Environmental Safety, 249, 114405.
- Smith, D., Jones, R., & Clarke, N. (2020). Influence of soil carbon content on atrazine sorption and leaching. Pesticide Biochemistry and Physiology, 170, 104701.
- Tejada, M., Gómez, I., & Hernández, M. T. (2011). Application of organic amendments to a soil contaminated with atrazine: Effects on soil properties, microbial activity, and atrazine degradation. Applied Soil Ecology, 47(3), 207-216.
- U.S. Environmental Protection Agency (EPA). (2003). Atrazine, updated human health risk assessment. Washington, DC: U.S. EPA.
- Vizioli, G., Rossi, G., & Caruso, G. (2023). Atrazine in agriculture: Benefits, risks, and management. Pesticide Science, 79(2), 145–160.
- Wang, X., Liu, J., Zhang, J., & Chen, Y. (2023). Soil organic matter effects on atrazine retention and degradation in contrasting soils. Journal of Soils and Sediments, *23*(4), 1256–1268.
- Biochar application reduces pesticide mobility and enhances soil microbial activity: A meta-analysis. Science of the Total Environment, 908, 167729.
- Xu, J., Chen, W., Wu, H., & Sun, Y. (2020). Effect of soil amendments on atrazine mobility and degradation. Environmental Pollution, 266, 115204.
- Yang, L., Ma, Y., Zhou, H., & Wu, L. (2021). Atrazine: Occurrence, toxicity, and its remediation in soil and water environments. Environmental Research, *202*, 111694.
- Yavari, S., Maleki, A., & Amoozegar, M. A. (2022). Biochar effects on the fate of pesticides in soil: Sorption, degradation, and microbial interactions. Environmental Chemistry Letters, 20(2), 1201-1214.
- Zhao, Y., Wang, L., & Li, Y. (2023).

- Environmental risk of atrazine residues in agricultural landscapes: A global metaanalysis. Journal of Hazardous Materials, 442, 130022.
- Zheng, H., Wang, Z., Deng, X., Herbert, S., & Xing, B. (2013). Impacts of adding herbicide sorption in soils. Journal of Hazardous Materials, 261, 221–227.
- Kabir, S. F., Rahman, M. M., Rahman, M. A., & Hossen, M. T. (2023). Biochar as a sustainable amendment for improving soil health and mitigating environmental
- pollution: A review. Frontiers in Environmental Science, 11, 1324533. https://www.frontiersin.org/journals/envi ronmentalscience/articles/10.3389/fenvs.2023.132 4533/
- biochar on nitrogen retention and Udomkun, P., Mupangwa, W., Mutegi, J. K., & Muchiri, J. (2025). Biochar-microbial amendments enhance soil fertility and reduce herbicide contamination in tropical soils. Environmental Advances, 18, 1 0 0 2 4 6. https://www.sciencedirect.com/science/a rticle/pii/S2772416625002463?